
modbus

2023-September-20

Contents

1 Table of Contents 3
1.1 Acknowledgments . 3
1.2 Overview of Modbus . 3

1.2.1 Modbus communication links . 3
1.2.2 Modbus data types . 4
1.2.3 Modbus communications . 4
1.2.4 Modbus function codes . 4
1.2.5 Modbus addresses . 5
1.2.6 Modbus data length limitations . 6
1.2.7 More information on Modbus . 6

1.3 Driver architecture . 6
1.3.1 Modbus read functions . 7
1.3.2 Modbus write functions . 7
1.3.3 Modbus write/read functions . 8
1.3.4 Platform independence . 8

1.4 Creating a modbus port driver . 8
1.4.1 TCP/IP . 8
1.4.2 Serial RTU . 9
1.4.3 Serial ASCII . 9
1.4.4 modbusInterposeConfig . 9
1.4.5 drvModbusAsynConfigure . 10
1.4.6 Modbus register data types . 11
1.4.7 Note for Wago devices . 13
1.4.8 Number of drvAsynIPPort drivers for TCP . 13
1.4.9 Number formats . 13

1.5 EPICS device support . 14
1.5.1 asynUInt32Digital . 14
1.5.2 asynInt32 . 15
1.5.3 asynInt64 . 16
1.5.4 asynFloat64 . 17
1.5.5 asynInt32Array . 18
1.5.6 asynOctet . 18
1.5.7 Template files . 19

1.6 Example Applications . 21
1.7 medm screens . 24

1.7.1 modbusDataTypes.adl . 24

i

1.7.2 Koyo1.adl . 26
1.7.3 Koyo_8inputs.adl . 26
1.7.4 Koyo_8outputs.adl . 26
1.7.5 modbusArray.adl . 26
1.7.6 modbusStatistics.adl . 28
1.7.7 Koyo2.adl . 28
1.7.8 Koyo_4ADC.adl . 28

1.8 Debug tracing . 28
1.8.1 asynRecord.adl . 34
1.8.2 asynRegister.adl . 34

ii

modbus

author Mark Rivers, University of Chicago

This is an EPICS module for communicating with Modbus devices using asyn device support.

Contents 1

modbus

2 Contents

CHAPTER 1

Table of Contents

1.1 Acknowledgments

The modbus package is based on the modtcp and plctcp packages written by Rolf Keitel from Triumf. The modtcp
package was originally converted to Linux by Ivan So from NSLS. modbus was extensively re-written for conversion
to EPICS 3.14 and to use the EPICS asyn module. It now contains little of the original modtcp code, but retains much
of the original architecture.

1.2 Overview of Modbus

MODBUS is an application layer messaging protocol, positioned at level 7 of the OSI model, that provides client/server
communication between devices connected on different types of buses or networks. It is typically used for communi-
cation with I/O systems, including Programmable Logic Controllers (PLCs).

1.2.1 Modbus communication links

Modbus supports the following 3 communication-link layers:

3

http://isacwserv.triumf.ca/epics/modtcp/TRIUMFmodtcp.html

modbus

Link
type

Description

TCP TCP/IP using standard port 502.
RTU RTU is normally run over serial communication links, i.e. RS-232, RS-422, or RS-485. RTU uses an

additional CRC for packet checking. The protocol directly transmits each byte as 8 data bits, so uses “binary”
rather than ASCII encoding. When using serial links start and end of message frames is detected by timing
rather than by specific characters. RTU can also be run over TCP, though this is less common than the
standard Modbus TCP without RTU.

Se-
rial
ASCII

Serial protocol, which is normally run over serial communication links, i.e. RS-232, RS-422, or RS-485.
Serial ASCII uses an additional LRC for packet checking. The protocol encodes each byte as 2 ASCII
characters. The start and end of message frames is detected by specific characters (“:” to start a message
and CR/LF to end a message). This protocol is less efficient than RTU, but may be more reliable in some
environments. ASCII can also be run over TCP, though this is much less common than the standard Modbus
TCP.

This modbus package supports all of the above Modbus communication-link layers.

1.2.2 Modbus data types

Modbus provides access to the following 4 types of data:

Primary tables Object type Access Comments
Discrete Inputs Single bit Read-Only This type of data can be provided by an I/O system.
Coils Single bit Read-Write This type of data can be alterable by an application program.
Input Registers 16-bit word Read-Only This type of data can be provided by an I/O system.
Holding Registers 16-bit word Read-Write This type of data can be alterable by an application program.

1.2.3 Modbus communications

Modbus communication consists of a request message sent from the Modbus client to the Modbus server. The server
replies with a response message. Modbus request messages contain:

• An 8-bit Modbus function code that describes the type of data transfer to be performed.

• A 16-bit Modbus address that describes the location in the server to read or write data from.

• For write operations, the data to be transferred.

1.2.4 Modbus function codes

modbus supports the following 9 Modbus function codes:

4 Chapter 1. Table of Contents

modbus

Access Function description Function code
Bit access Read Coils 1
Bit access Read Discrete Inputs 2
Bit access Write Single Coil 5
Bit access Write Multiple Coils 15
16-bit word access Read Input Registers 4
16-bit word access Read Holding Registers 3
16-bit word access Write Single Register 6
16-bit word access Write Multiple Registers 16
16-bit word access Read/Write Multiple Registers 23

1.2.5 Modbus addresses

Modbus addresses are specified by a 16-bit integer address. The location of inputs and outputs within the 16-bit address
space is not defined by the Modbus protocol, it is vendor-specific. The following table lists some of the commonly
used Modbus addresses for Koyo DL05/06/240/250/260/430/440/450 PLCs.

Discrete inputs and coils

PLC Memory Type Modbus start address Decimal (octal) Function codes
Inputs (X) 2048 (04000) 2
Special Relays (SP) 3072 (06000) 2
Outputs (Y) 2048 (04000) 1, 5, 15
Control Relays (C) 3072 (06000) 1, 5, 15
Timer Contacts (T) 6144 (014000) 1, 5, 15
Counter Contacts (CT) 6400 (014400) 1, 5, 15
Stage Status Bits (S) 6144 (012000) 1, 5, 15

Input registers and holding registers (V memory)

PLC Memory Type Modbus start address Decimal (octal) Function codes
Timer Current Values (TA) 0 (00) 4
Counter Current Values (CTA) 512 (01000) 4
Global Inputs (VGX) 16384 (040000) 4
Global Outputs (VGY) 16512 (040200) 3, 6, 16
Inputs (VX) 16640 (040400) 4
Outputs (VY) 16704 (040500) 3, 6, 16
Control Relays (VC) 16768 (040600) 3, 6, 16
Stage Status Bits (VS) 16896 (041000) 3, 6, 16
Timer Contacts (VT) 16960 (041100) 3, 6, 16
Counter Contacts (VCT) 16992 (041140) 3, 6, 16
Special Relays (VSP) 17024 (041200) 4

Other PLC manufacturers will use different Modbus addresses.

Note that 16-bit Modbus addresses are commonly specified with an offset of 400001 (or 300001). This offset is not
used by the modbus driver, it uses only the 16-bit address, not the offset.

1.2. Overview of Modbus 5

modbus

1.2.6 Modbus data length limitations

Modbus read operations are limited to transferring 125 16-bit words or 2000 bits. Modbus write operations are limited
to transferring 123 16-bit words or 1968 bits.

1.2.7 More information on Modbus

For more information about the Modbus protocol, the official Modbus specification can be found on the Web or in the
modbus documentation directory. Modbus_Application_Protocol_V1_1b.pdf.

The official specification for Modbus over TCP/IP can be found on the Web or in the modbus documentation directory.
Modbus_Messaging_Implementation_Guide_V1_0b.pdf.

The official specification for Modbus over serial can be found ‘on the Web
<http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf‘__ or in the modbus documentation di-
rectory. Modbus_over_serial_line_V1_02.pdf.

1.3 Driver architecture

CAUTION: modbus can provide access to all of the I/O and memory of the PLC. In fact, it is not even necessary to
run a ladder logic program in the PLC at all. The PLC can be used as a “dumb” I/O subsystem, with all of the logic
residing in the EPICS IOC. However, if a ladder logic program is being run in the PLC then the EPICS access with
modbus must be designed carefully. For example, the EPICS IOC might be allowed to read any of the PLC I/O points
(X inputs, Y outputs, etc.), but writes could be restricted to a small range of Control Registers, (e.g. C200-C240). The
ladder logic would monitor these control registers, considering them to be “requests” from EPICS that should be acted
upon only if it is safe to do so.

The architecture of the modbus module from the top-level down consists of the following 4 layers:

1. EPICS asyn device support. This is the general purpose device support provided with asyn There is no special
device support needed or provided with modbus.

2. An EPICS asyn port driver that functions as a Modbus client. The modbus port driver communicates with EPICS
device support (layer 1) using the standard asyn interfaces (asynUInt32Digital, asynInt32, etc.). This driver
sends and receives device-independent Modbus frames via the standard asynOctet interface to the “interpose
interface” (layer 3). These frames are independent of the underlying communications protocol. Prior to R3-0
this driver was written in C. In R3-0 it was written as a C++ class that inherits from asynPortDriver. This allows
it to export its methods in a way that is easy for other drivers to use, in particular the doModbusIO() method.

3. An asyn “interpose interface” layer that handles the additional data required by the underlying communications
layer (TCP, RTU, ASCII). This layer communicates via the standard asynOctet interface to both the overlying
Modbus driver (layer 2) and to the underlying asyn hardware port driver (layer 4).

4. An asyn port driver that handles the low-level communication (TCP/IP or serial). This is one of the standard
port drivers provided with asyn, i.e. drvAsynIPPort or drvAsynSerialPort. They are not part of the modbus
module.

Because modbus makes extensive use of existing asyn facilities, and only needs to implement layers 2 and 3 above,
the amount of code in modbus is quite small (fewer than 3,900 lines).

Each modbus port driver is assigned a single Modbus function code. Usually a drivers is also assigned a single
contiguous range of Modbus memory, up to 2000 bits or 125 words. One typically creates several modbus port drivers
for a single PLC, each driver reading or writing a different set of discrete inputs, coils, input registers or holding
registers. For example, one might create one port driver to read discrete inputs X0-X37, a second to read control
registers C0-C377, and a third to write control registers C300-C377. In this case the asyn address that is used by each
record is relative to the starting address for that driver.

6 Chapter 1. Table of Contents

http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf
http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
https://epics-modules.github.io/master/asyn/R4-40/asynDriver.html#genericEpicsSupport
https://github.com/epics-modules/asyn
https://epics-modules.github.io/master/asyn/R4-40/asynDriver.html#drvAsynIPPort
https://epics-modules.github.io/master/asyn/R4-40/asynDriver.html#drvAsynSerialPort

modbus

It is also possible to create a driver is allowed to address any location in the 16-bit Modbus address space. Each read
or write operation is still limited to the 125/123 word limits. In this case the asyn address that is used by each record
is the absolute Modbus address. This absolute addressing mode is enabled by passing -1 as the modbusStartAddress
when creating the driver.

The restriction the modbus port driver to a single Modbus function does not apply to the doModbusIO() method. This
method can be used for arbitrary Modbus IO using any function code. If absolute addressing is enabled as described
above then the doModbusIO() function can also address any Modbus memory location.

The behavior of the port driver differs for read function codes (1, 2, 3, 4), write function codes (5, 6, 15, 16), and
read/write function codes (23).

1.3.1 Modbus read functions

For read function codes (when absolute addressing is not being used) the driver spawns a poller thread. The poller
thread reads the entire block of Modbus memory assigned to this port in a single Modbus transaction. The values are
stored in a buffer in the driver. The delay between polls is set when the port driver is created, and can be changed
later at run-time. The values are read by EPICS using the standard asyn interfaces (asynUInt32Digital, asynInt32,
asynInt64, asynFloat64, etc.) The values that are read are the last stored values from the poller thread. The means that
EPICS read operations are asynchronous, i.e. they can block. This is because although they do not directly result in
Modbus I/O, they do need to wait for a mutex that indicates that the poller thread is done.

For read functions it is possible to set the EPICS records to “I/O Intr” scanning. If this is done then the port driver
will call back device support whenever there is new data for that input. This improves efficiency, because such records
only process when needed, they do not need to be periodically scanned.

The previous paragraphs describe the normal configuration for read operations, where relative Modbus addressing is
being used. If absolute addressing is being used then the driver does not create a poller thread, because it does not
know what parts of the Modbus address space should be polled. In this case read records cannot have SCAN=I/O Intr.
They must either be periodically scanned, or scanned by directly causing the record to process, such as writing 1 to the
.PROC field. Each time the record processes it will result in a separate Modbus read operation. NOTE: This is much
less efficient than reading many registers at once with relative Modbus addressing. For this reason absolute Modbus
addressing with read functions should normally be avoided.

1.3.2 Modbus write functions

For write function codes the driver does not itself create a separate thread. Rather the driver does the Modbus I/O im-
mediately in response to the write operations on the standard asyn interfaces. This means that EPICS write operations
are also asynchronous, i.e. they block because Modbus I/O is required. When the modbus driver is created it tells
asynManager that it can block, and asynManager creates a separate thread that executes the write operations.

Word write operations using the asynUInt32Digital interface (with a mask parameter that is not 0x0 or 0xFFFF) are
done using read/modify/write operations. This allows multiple Modbus clients to write and read single words in
the same block of Modbus memory. However, it does not guarantee correct operation if multiple Modbus clients
(or the PLC itself) can modify bits within a single word. This is because the Modbus server cannot perform the
read/modify/write I/O as an atomic operation at the level of the Modbus client.

For write operations it is possible to specify that a single read operation should be done when the port driver is created.
This is normally used so that EPICS obtains the current value of an output device when the IOC is initialized.

Modbus RTU specifies a minimum delay of 3.5 character times between writes to the device. The modbusInterposeC-
onfig function allows one to specify a write delay in msec before each write.

1.3. Driver architecture 7

modbus

1.3.3 Modbus write/read functions

Modbus function code 23 allows for writing a set of registers and reading a set of registers in a single operation. The
read operation is performed after the write operation, and the register range to be read can be different from the register
range to be written. Function code 23 is not widely used, and the write/read operation is not a good fit to the modbus
driver model of read-only and write-only drivers. Function code 23 is implemented in modbus with the following
restrictions:

• A driver that uses Modbus function code 23 is either read-only or write-only.

• A read-only driver is created by specifying function code 123 to the drvModbusAsynConfigure command de-
scribed below. The driver will use Modbus function code 23 for the Modbus protocol. It will only read registers
(like function codes 3 and 4), it will not write any data to the device.

• A write-only driver is created by specifying function code 223 to the drvModbusAsynConfigure command
described below. The driver will use Modbus function code 23 for the Modbus protocol. It will only write
registers (like function code 16), it will not read any data from the device.

1.3.4 Platform independence

modbus should run on all EPICS platforms. It has been tested on linux-x86, linux-x86_64, vxWorks-ppc32, win32-
x86, windows-x64, (native Windows with Microsoft Visual Studio C++ compiler).

The only thing that may be architecture dependent in modbus is the structure packing in modbus.h. The “#pragma
pack(1)” directive used there is supported on gnu and Microsoft compilers. If this directive is not supported on some
compilers of interest then modbus.h will need to have the appropriate architecture dependent code added.

1.4 Creating a modbus port driver

Before modbus port drivers can be created, it is necessary to first create at least one asyn TCP/IP or serial port driver
to communicate with the hardware. The commands required depend on the communications link being used.

1.4.1 TCP/IP

For TCP/IP use the following standard asyn command:

drvAsynIPPortConfigure(portName, hostInfo, priority, noAutoConnect, noProcessEos)

Documentation on this command can be found in the asynDriver documentation.

The following example creates an asyn IP port driver called “Koyo1” on port 502 at IP address 164.54.160.158.
The default priority is used and the noAutoConnect flag is set to 0 so that asynManager will do normal automatic
connection management. Note that the noProcessEos flag is set to 0 so it is using the asynInterposeEos interface. The
asynInterposeEos interface handles end-of-string (EOS) processing, which is not needed for Modbus TCP. However, it
also handles issuing repeated read requests until the requested number of bytes has been received, which the low-level
asyn IP port driver does not do. Normally Modbus TCP sends responses in a single packet, so this may not be needed,
but using the asynInterpose interface does no harm. However, the asynInterposeEos interface is definitely needed
when using drvAsynIPPortConfigure to talk to a terminal server that is communicating with the Modbus device over
Modbus RTU or ASCII, because then the communication from the device may well be broken up into multiple packets.

drvAsynIPPortConfigure("Koyo1","164.54.160.158:502",0,0,0)

8 Chapter 1. Table of Contents

https://epics-modules.github.io/master/asyn/R4-40/asynDriver.html#drvAsynIPPort

modbus

1.4.2 Serial RTU

For serial RTU use the following standard asyn commands This is recommended even when using actual:

drvAsynSerialPortConfigure(portName, ttyName, priority, noAutoConnect, noProcessEos)
asynSetOption(portName, addr, key, value)

Documentation on these commands can be found in the asynDriver documentation.

The following example creates an asyn local serial port driver called “Koyo1” on /dev/ttyS1. The default priority is
used and the noAutoConnect flag is set to 0 so that asynManager will do normal automatic connection management.
The noProcessEos flag is set to 0 because Modbus over serial requires end-of-string processing. The serial port
parameters are configured to 38400 baud, no parity, 8 data bits, 1 stop bit.

drvAsynSerialPortConfigure("Koyo1", "/dev/ttyS1", 0, 0, 0)
asynSetOption("Koyo1",0,"baud","38400")
asynSetOption("Koyo1",0,"parity","none")
asynSetOption("Koyo1",0,"bits","8")
asynSetOption("Koyo1",0,"stop","1")

1.4.3 Serial ASCII

For serial ASCII use the same commands described above for serial RTU. After the asynSetOption commands use the
following standard asyn commands:

asynOctetSetOutputEos(portName, addr, eos)
asynOctetSetInputEos(portName, addr, eos)

Documentation on these commands can be found in the asynDriver documentation.

The following example creates an asyn local serial port driver called “Koyo1” on /dev/ttyS1. The default priority is
used and the noAutoConnect flag is set to 0 so that asynManager will do normal automatic connection management.
The noProcessEos flag is set to 0 because Modbus over serial requires end-of-string processing. The serial port
parameters are configured to 38400 baud, no parity, 8 data bits, 1 stop bit. The input and output end-of-string is set to
CR/LF.

drvAsynSerialPortConfigure("Koyo1", "/dev/ttyS1", 0, 0, 0)
asynSetOption("Koyo1",0,"baud","38400")
asynSetOption("Koyo1",0,"parity","none")
asynSetOption("Koyo1",0,"bits","8")
asynSetOption("Koyo1",0,"stop","1")
asynOctetSetOutputEos("Koyo1",0,"\r\n")
asynOctetSetInputEos("Koyo1",0,"\r\n")

1.4.4 modbusInterposeConfig

After creating the asynIPPort or asynSerialPort driver, the next step is to add the asyn “interpose interface” driver. This
driver takes the device-independent Modbus frames and adds or removes the communication-link specific information
for the TCP, RTU, or ASCII link protocols. The interpose driver is created with the command:

modbusInterposeConfig(portName,
linkType,
timeoutMsec,
writeDelayMsec)

1.4. Creating a modbus port driver 9

https://epics-modules.github.io/master/asyn/R4-40/asynDriver.html#drvAsynSerialPort
https://epics-modules.github.io/master/asyn/R4-41/asynDriver.html#DiagnosticAids

modbus

Pa-
ram-
eter

Data
type

Description

port-
Name

string Name of the asynIPPort or asynSerialPort previously created.

link-
Type

int Modbus link layer type:, 0 = TCP/IP, 1 = RTU, 2 = ASCII

time-
outM-
sec

int The timeout in milliseconds for write and read operations to the underlying asynOctet driver. This
value is used in place of the timeout parameter specified in EPICS device support. If zero is speci-
fied then a default timeout of 2000 milliseconds is used.

writ-
eDe-
layM-
sec

int The delay in milliseconds before each write from EPICS to the device. This is typically only needed
for Serial RTU devices. The Modicon Modbus Protocol Reference Guide says this must be at least
3.5 character times, e.g. about 3.5ms at 9600 baud, for Serial RTU. The default is 0.

For the serial ASCII example above, after the asynOctetSetInputEos command, the following command would be
used. This uses a timeout of 1 second, and a write delay of 0 ms.

modbusInterposeConfig("Koyo1",2,1000,0)

1.4.5 drvModbusAsynConfigure

Once the asyn IP or serial port driver has been created, and the modbusInterpose driver has been configured, a modbus
port driver is created with the following command:

drvModbusAsynConfigure(portName,
tcpPortName,
slaveAddress,
modbusFunction,
modbusStartAddress,
modbusLength,
dataType,
pollMsec,
plcType);

10 Chapter 1. Table of Contents

modbus

Pa-
ram-
e-
ter

Data
type

Description

port-
Name

string Name of the modbus port to be created.

tcp-
Port-
Name

string Name of the asyn IP or serial port previously created.

slaveAd-
dress

int The address of the Modbus slave. This must match the configuration of the Modbus slave (PLC) for
RTU and ASCII. For TCP the slave address is used for the “unit identifier”, the last field in the MBAP
header. The “unit identifier” is ignored by most PLCs, but may be required by some.

mod-
bus-
Func-
tion

int Modbus function code (1, 2, 3, 4, 5, 6, 15, 16, 123 (for 23 read-only), or 223 (for 23 write-only)).

mod-
busStar-
tAd-
dress

int Start address for the Modbus data segment to be accessed. For relative addressing this must be in the
range 0-65535 decimal, or 0-0177777 octal. For absolute addressing this must be set to -1.

mod-
busLength

int The length of the Modbus data segment to be accessed. This is specified in bits for Modbus functions
1, 2, 5 and 15. It is specified in 16-bit words for Modbus functions 3, 4, 6, 16, or 23. Length limit
is 2000 for functions 1 and 2, 1968 for functions 5 and 15, 125 for functions 3 and 4, and 123 for
functions 6, 16, and 23. For absolute addressing this must be set to the size of required by the largest
single Modbus operation that may be used. This would be 1 if all Modbus reads and writes are for
16-bit registers, but it would be 4 if 64-bit floats (4 16-bit registers) are being used, and 100 (for
example) if an Int32 waveform record with NELM=100 is being read or written.

mod-
bus-
DataType

string This sets the default data type for this port. This is the data type used if the drvUser field of a record
is empty, or if it is MODBUS_DATA. The supported Modbus data type strings are listed in the table
below. This argument can either be one of the strings shown in the table below, and defined in drv-
ModbusAsyn.h, or it can be the numeric modbusDataType_t enum also defined in drvModbusAsyn.h.
The enum values are less convenient and understandable then the string equivalents. NOTE: the enum
values changed between R3-0 and R3-1, which may require changes to startup scripts. INT16 and
UINT16 were swapped and everything beyond INT32_LE is different.

pollM-
sec

int Polling delay time in msec for the polling thread for read functions. For write functions, a non-zero
value means that the Modbus data should, be read once when the port driver is first created.

plcTypestring Type of PLC (e.g. Koyo, Modicon, etc.). This parameter is currently used to print information in
asynReport. It is also used to treat Wago devices specially if the plcType string contains the substring
“Wago”. See the note below.

1.4.6 Modbus register data types

Modbus function codes 3, 4, 6, and 16 are used to access 16-bit registers. The Modbus specification does not define
how the data in these registers is to be interpreted, for example as signed or unsigned numbers, binary coded decimal
(BCD) values, etc. In fact many manufacturers combine multiple 16-bit registers to encode 32-bit integers, 32-bit or
64-bit floats, etc. The following table lists the data types supported by modbus. The default data type for the port
is defined with the modbusDataType parameter described above. The data type for particular record can override
the default by specifying a different data type with the drvUser field in the link. The driver uses this information to
convert the number between EPICS device support and Modbus. Data is transferred to and from EPICS device support
as epicsUInt32, epicsInt32, epicsInt64, and epicsFloat64 numbers. Note that the data type conversions described in
this table only apply for records using the asynInt32, asynInt64, or asynFloat64 interfaces, they do not apply when
using the asynUInt32Digital interface. The asynUInt32Digital interface always treats the registers as unsigned 16-bit

1.4. Creating a modbus port driver 11

modbus

integers.

drvUser field Description
INT16 16-bit signed (2’s complement) integers. This data type extends the sign bit when converting to epicsInt32.
INT16SM 16-bit binary integers, sign and magnitude format. In this format bit 15 is the sign bit, and bits 0-14 are the absolute value of the magnitude of the number. This is one of the formats used, for example, by Koyo PLCs for numbers such as ADC conversions.
BCD_UNSIGNED Binary coded decimal (BCD), unsigned. This data type is for a 16-bit number consisting of 4 4-bit nibbles, each of which encodes a decimal number from 0-9. A BCD number can thus store numbers from 0 to 9999. Many PLCs store some numbers in BCD format.
BCD_SIGNED 4-digit binary coded decimal (BCD), signed. This data type is for a 16-bit number consisting of 3 4-bit nibbles, and one 3-bit nibble. Bit 15 is a sign bit. Signed BCD numbers can hold values from -7999 to +7999. This is one of the formats used by Koyo PLCs for numbers such as ADC conversions.
UINT16 Unsigned 16-bit binary integers.
INT32_LE 32-bit integers, little endian (least significant word at Modbus address N, most significant word at Modbus address N+1).
INT32_LE_BS 32-bit integers, little endian (least significant word at Modbus address N, most significant word at Modbus address N+1). Bytes within each word are swapped.
INT32_BE 32-bit integers, big endian (most significant word at Modbus address N, least significant word at Modbus address N+1).
INT32_BE_BS 32-bit integers, big endian (most significant word at Modbus address N, least significant word at Modbus address N+1). Bytes within each word are swapped.
UINT32_LE Unsigned 32-bit integers, little endian (least significant word at Modbus address N, most significant word at Modbus address N+1).
UINT32_LE_BS Unsigned 32-bit integers, little endian (least significant word at Modbus address N, most significant word at Modbus address N+1). Bytes within each word are swapped.
UINT32_BE Unsigned 32-bit integers, big endian (most significant word at Modbus address N, least significant word at Modbus address N+1).
UINT32_BE_BS Unsigned 32-bit integers, big endian (most significant word at Modbus address N, least significant word at Modbus address N+1). Bytes within each word are swapped.
INT64_LE 64-bit integers, little endian (least significant word at Modbus address N, most significant word at Modbus address N+3).
INT64_LE_BS 64-bit integers, little endian (least significant word at Modbus address N, most significant word at Modbus address N+3). Bytes within each word are swapped.
INT64_BE 64-bit integers, big endian (most significant word at Modbus address N, least significant word at Modbus address N+3).
INT64_BE_BS 64-bit integers, big endian (most significant word at Modbus address N, least significant word at Modbus address N+3). Bytes within each word are swapped.
UINT64_LE Unsigned 64-bit integers, little endian (least significant word at Modbus address N, most significant word at Modbus address N+3).
UINT64_LE_BS Unsigned 64-bit integers, little endian (least significant word at Modbus address N, most significant word at Modbus address N+3). Bytes within each word are swapped.
UINT64_BE Unsigned 64-bit integers, big endian (most significant word at Modbus address N, least significant word at Modbus address N+3).
UINT64_BE_BS Unsigned 64-bit integers, big endian (most significant word at Modbus address N, least significant word at Modbus address N+3). Bytes within each word are swapped.
FLOAT32_LE 32-bit floating point, little endian (least significant word at Modbus address N, most significant word at Modbus address N+1).
FLOAT32_LE_BS 32-bit floating point, little endian (least significant word at Modbus address N, most significant word at Modbus address N+1). Bytes within each word are swapped.
FLOAT32_BE 32-bit floating point, big endian (most significant word at Modbus address N, least significant word at Modbus address N+1).
FLOAT32_BE_BS 32-bit floating point, big endian (most significant word at Modbus address N, least significant word at Modbus address N+1). Bytes within each word are swapped.
FLOAT64_LE 64-bit floating point, little endian (least significant word at Modbus address N, most significant word at Modbus address N+3).
FLOAT64_LE_BS 64-bit floating point, little endian (least significant word at Modbus address N, most significant word at Modbus address N+3). Bytes within each word are swapped.
FLOAT64_BE 64-bit floating point, big endian (most significant word at Modbus address N, least significant word at Modbus address N+3).
FLOAT64_BE_BS 64-bit floating point, big endian (most significant word at Modbus address N, least significant word at Modbus address N+3). Bytes within each word are swapped.
STRING_HIGH String data. One character is stored in the high byte of each register.
STRING_LOW String data. One character is stored in the low byte of each register.
STRING_HIGH_LOW String data. Two characters are stored in each register, the first in the high byte and the second in the low byte.
STRING_LOW_HIGH String data. Two characters are stored in each register, the first in the low byte and the second in the high byte.
ZSTRING_HIGH Zero terminated string data. One character is stored in the high byte of each register.
ZSTRING_LOW Zero terminated string data. One character is stored in the low byte of each register.
ZSTRING_HIGH_LOW Zero terminated string data. Two characters are stored in each register, the first in the high byte and the second in the low byte.
ZSTRING_LOW_HIGH Zero terminated string data. Two characters are stored in each register, the first in the low byte and the second in the high byte.

NOTE: if it is desired to transmit BCD numbers untranslated to EPICS over the asynInt32 interface, then data type 0
should be used, because no translation is done in this case.

NOTE: the ZSTRING_* types are meant for output records. For input records they are identical to their STRING_*
counterparts.

NOTE: For big-endian formats the _BE format is order in which an IEEE value would be stored on a big-endian
machine, and _BE_BS swaps the bytes in each 16-bit word relative to IEEE specification. However, for little-endian
formats the _LE format is byte-swapped within each 16-bit word compared how the IEEE value would be be stored
on a little-endian machine. The _LE_BS format is the order in which an IEEE value would be stored on a little-endian
machine. This is done for backwards compatibility, because that is how _LE has always been stored in previous
versions of this modbus module, before the byte-swapped formats were added.

12 Chapter 1. Table of Contents

modbus

The following is an example ai record using 32-bit floating point values:

ai record template for register inputs
record(ai, "(P)(R)") {

field(DTYP,"asynFloat64")
field(INP,"@asyn($(PORT) $(OFFSET))FLOAT32_LE")
field(HOPR,"$(HOPR)")
field(LOPR,"$(LOPR)")
field(PREC,"$(PREC)")
field(SCAN,"$(SCAN)")

}

1.4.7 Note for Wago devices

This initial read operation is normally done at the same Modbus address as the write operations. However, Wago
devices are different from other Modbus devices because the address to read back a register is not the same as the
address to write the register. For Wago devices the address used to read back the initial value for a Modbus write
function must be 0x200 greater than the address for the write function. This is handled by adding this 0x200 offset
for the readback address if the plcType argument to drvModbusAsynConfigure contains the substring “Wago” (case
sensitive). Note that this does not affect the address for Wago read functions. The user must specify the actual Modbus
address for read functions.

1.4.8 Number of drvAsynIPPort drivers for TCP

Each drvAsynIPPort driver creates a separate TCP/IP socket connection to the PLC. It is possible to have all of the
modbus port drivers share a single drvAsynIPPort driver. In this case all I/O to the PLC is done over a single socket in
a “serial” fashion. A transaction for one modbus driver must complete before a transaction for another modbus driver
can begin. It is also possible to create multiple drvAsynIPPort drivers (sockets) to a single PLC and, for example,
use a different drvAsynIPPort for each modbus port. In this case I/O operations from multiple modbus drivers can
proceed in parallel, rather than serially. This could improve performance at the expense of more CPU load on the IOC
and PLC, and more network traffic.

It is important to note, however, that many PLCs will time out sockets after a few seconds of inactivity. This is
not a problem with modbus drivers that use read function codes, because they are polling frequently. But modbus
drivers that use write function codes may only do occasional I/O, and hence may time out if they are the only ones
communicating through a drvAsynIPPort driver. Thus, it is usually necessary for modbus drivers with write function
codes to use the same drvAsynIPPort driver (socket) as at least one modbus driver with a read function code to avoid
timeouts.

The choice of how many drvAsynIPPort drivers to use per PLC will be based on empirical performance versus resource
usage considerations. In general it is probably a good idea to start with one drvAsynIPPort server per PLC (e.g. shared
by all modbus drivers for that PLC) and see if this results in satisfactory performance.

1.4.9 Number formats

It can be convenient to specify the modbusStartAddress and modbusLength in octal, rather than decimal, because this
is the convention on most PLCs. In the iocsh and vxWorks shells this is done by using a leading 0 on the number, i.e.
040400 is an octal number.

1.4. Creating a modbus port driver 13

modbus

1.5 EPICS device support

modbus implements the following standard asyn interfaces:

• asynUInt32Digital

• asynInt32

• asynInt32Array

• asynInt64

• asynFloat64

• asynOctet

• asynCommon

• asynDrvUser

Because it implements these standard interfaces, EPICS device support is done entirely with the generic EPICS device
support provided with asyn itself. There is no special device support provided as part of modbus.

It is necessary to use asyn R4-8 or later, because some minor enhancements were made to asyn to support the features
required by modbus.

The following tables document the asyn interfaces used by the EPICS device support.

The drvUser parameter is used by the driver to determine what command is being sent from device support. The
default is MODBUS_DATA, which is thus optional in the link specification in device support. If no drvUser field is
specified, or if MODBUS_DATA is specified, then the Modbus data type for records using the asynInt32, asynInt64,
and asynFloat64 interfaces is the default data type specified in the drvModbusAsynConfigure command. Records can
override the default Modbus data type by specifying datatype-specific drvUser field, e.g. BCD_SIGNED, INT16,
FLOAT32_LE, etc.

The offset parameter is used to specify the location of the data for a record relative to the starting Modbus address for
that driver. This offset is specified in bits for drivers using Modbus functions 1, 2, 5, and 15 that control discrete inputs
or coils. For example, if the Modbus function is 2 and the Modbus starting address is 04000, then offset=2 refers to
address 04002. For a Koyo PLC the X inputs are at this Modbus starting address for Modbus function 2, so offset=2
is input X2.

If absolute addressing is being used then the offset parameter is an absolute 16-bit Modbus address, and is not relative
to the starting Modbus address, which is -1.

The offset is specified in words for drivers using Modbus functions 3, 4, 6 and 16 that address input registers or holding
registers. For example, if the Modbus function is set to 6 and the Modbus address is 040600 then offset=2 refers to
address 040602. For a Koyo PLC the C control relays are accessed as 16-bit words at this Modbus starting address for
Modbus function 6. offset=2 will thus write to the third 16 bit-word, which is coils C40-C57.

For 32-bit or 64-bit data types (INT32_LE, INT32_BE, FLOAT32_LE, FLOAT32_BE) the offset specifies the location
of the first 16-bit register, and the second register is at offset+1, etc.

For string data types (STRING_HIGH, STRING_LOW, STRING_HIGH_LOW, STRING_LOW_HIGH,
ZSTRING_HIGH, ZSTRING_LOW, ZSTRING_HIGH_LOW, ZSTRING_LOW_HIGH) the offset specifies
the location of the first 16-bit register, and the second register is at offset+1, etc.

1.5.1 asynUInt32Digital

asynUInt32Digital device support is selected with

14 Chapter 1. Table of Contents

modbus

field(DTYP,"asynUInt32Digital")
field(INP,"@asynMask(portName,offset,mask,timeout)drvUser")

Mod-
bus
func-
tion

Off-
set
type

Data
type

drvUser Records
sup-
ported

Description

1, 2 Bit Sin-
gle
bit

MOD-
BUS_DATA

bi, mbbi,
mbbiDi-
rect,
longin

value = (Modbus data & mask), (normally mask=1)

3, 4,
23

16-
bit
word

16-
bit
word

MOD-
BUS_DATA

bi, mbbi,
mbbiDi-
rect,
longin

value = (Modbus data & mask), (mask selects bits of interest)

5 Bit Sin-
gle
bit

MOD-
BUS_DATA

bo, mbbo,
mbboDi-
rect,
longout

Modbus write (value & mask), (normally mask=1)

6, 16 16-
bit
word

16-
bit
word

MOD-
BUS_DATA

bo, mbbo,
mbboDi-
rect,
longout

If mask==0 or mask==0xFFFF does Modbus write (value). Else
does read/modify/write:Sets bits that are set in value and set in
mask. Clears bits that are clear in value and set in mask.

Any NA NA EN-
ABLE_HISTOGRAM

bi, mbbi,
mbbiDi-
rect,
longin

Returns 0/1 if I/O time histogramming is disabled/enabled in
driver.

Any NA NA EN-
ABLE_HISTOGRAM

bo, mbbo,
mbboDi-
rect,
longout

If value = 0/1 then disable/enable I/O time histogramming in
driver.

1.5.2 asynInt32

asynInt32 device support is selected with

field(DTYP,"asynInt32")
field(INP,"@asyn(portName,offset,timeout)drvUser")

or

field(INP,"@asynMask(portName,offset,nbits,timeout)drvUser")

The asynMask syntax is used for analog I/O devices, in order to specify the number of bits in the device. This is
required for Modbus because the driver only knows that it is returning a 16-bit register, but not the actual number of
bits in the device, and hence cannot return meaningful data with asynInt32->getBounds().

nbits>0 for a unipolar device. For example, nbits=12 means unipolar 12-bit device, with a range of 0 to 4095. nbits<0
for a bipolar device. For example, nbits=-12 means bipolar 12-bit device, with a range of -2048 to 2047)

Note: when writing 32-bit or 64-bit values function code 16 should be used if the device supports it. The write will
then be “atomic”. If function code 6 is used then the data will be written in multiple messages, and there will be an
short time period in which the device has incorrect data.

1.5. EPICS device support 15

modbus

Mod-
bus
func-
tion

Off-
set
type

Data
type

drvUser Records
sup-
ported

Description

1, 2 Bit Single
bit

MOD-
BUS_DATA

ai, bi,
mbbi,
longin

value = (epicsUInt32)Modbus data

3, 4,
23

16-
bit
words

16,
32, or
64-bit
word

MOD-
BUS_DATA
(or datatype-
specific value)

ai,
mbbi,
longin

value = (epicsInt32)Modbus data

5 Bit Single
bit

MOD-
BUS_DATA

ao, bo,
mbbo,
longout

Modbus write value

6, 16,
23

16-
bit
words

16,
32, or
64-bit
word

MOD-
BUS_DATA
(or datatype-
specific value)

ao,
mbbo,
longout

Modbus write value

Any NA NA MOD-
BUS_READ

ao, bo,
longout

Writing to a Modbus input driver with this drvUser
value will force the poller thread to run once immedi-
ately, regardless of the value of POLL_DELAY.

Any NA NA READ_OK ai, lon-
gin

Returns number of successful read operations on this
asyn port

Any NA NA WRITE_OK ai, lon-
gin

Returns number of successful write operations on this
asyn port

Any NA NA IO_ERRORS ai, lon-
gin

Returns number of I/O errors on this asyn port

Any NA NA LAST_IO_TIME ai, lon-
gin

Returns number of milliseconds for last I/O operation

Any NA NA MAX_IO_TIME ai, lon-
gin

Returns maximum number of milliseconds for I/O op-
erations

Any NA NA HIS-
TOGRAM_BIN_TIME

ao, lon-
gout

Sets the time per bin in msec in the statistics histogram

1.5.3 asynInt64

asynInt64 device support is selected with

field(DTYP,"asynInt64")
field(INP,"@asyn(portName,offset,timeout)drvUser")

Note: when writing 32-bit or 64-bit values function code 16 should be used if the device supports it. The write will
then be “atomic”. If function code 6 is used then the data will be written in multiple messages, and there will be an
short time period in which the device has incorrect data.

16 Chapter 1. Table of Contents

modbus

Modbus
function

Offset
type

Data type drvUser Records
supported

Description

1, 2 Bit Single bit MODBUS_DATA ai, longin,
int64in

value = (epic-
sUInt64)Modbus
data

3, 4, 23 16-bit
words

16, 32, or 64-
bit word

MODBUS_DATA (or
datatype-specific value)

ai, longin,
int64in

value = (epic-
sInt64)Modbus
data

5 Bit Single bit MODBUS_DATA ao, longout,
int64out

Modbus write value

6, 16, 23 16-bit
words

16, 32, or 64-
bit word

MODBUS_DATA (or
datatype-specific value)

ao, longout,
int64out

Modbus write value

1.5.4 asynFloat64

asynFloat64 device support is selected with

field(DTYP,"asynFloat64")
field(INP,"@asyn(portName,offset,timeout)drvUser")

Note: when writing 32-bit or 64-bit values function code 16 should be used if the device supports it. The write will
then be “atomic”. If function code 6 is used then the data will be written in multiple messages, and there will be an
short time period in which the device has incorrect data.

Mod-
bus
func-
tion

Off-
set
type

Data
type

drvUser Records
sup-
ported

Description

1, 2 Bit Sin-
gle
bit

MOD-
BUS_DATA

ai value = (epicsFloat64)Modbus data

3, 4,
23

16-
bit
words

16,
32,
or
64-
bit
word

MOD-
BUS_DATA
(or
datatype-
specific
value)

ai value = (epicsFloat64)Modbus data

5 Bit Sin-
gle
bit

MOD-
BUS_DATA

ao Modbus write (epicsUInt16)value

6,
16,
23

16-
bit
word

16-
bit
word

MOD-
BUS_DATA
(or
datatype-
specific
value)

ao Modbus write value

Any NA NA POLL_DELAYai,
ao

Read or write the delay time in seconds between polls for the read
poller thread. If <=0 then the poller thread does not run periodically, it
only runs when it is woken up by an epicsEvent signal, which happens
when the driver has an asynInt32 write with the MODBUS_READ
drvUser string.

1.5. EPICS device support 17

modbus

1.5.5 asynInt32Array

asynInt32Array device support is selected with

field(DTYP,"asynInt32ArrayIn")
field(INP,"@asyn(portName,offset,timeout)drvUser")

or

field(DTYP,"asynInt32ArrayOut")
field(INP,"@asyn(portName,offset,timeout)drvUser")

asynInt32Array device support is used to read or write arrays of up to 2000 coil values or up to 125 16-bit registers. It
is also used to read the histogram array of I/O times when histogramming is enabled.

Mod-
bus
func-
tion

Off-
set
type

Data type drvUser Records
sup-
ported

Description

1, 2 Bit Array of bits MODBUS_DATA wave-
form
(input)

value = (epicsInt32)Modbus data[]

3, 4, 23 16-
bit
word

Array of 16,
32 or 64-bit
words

MODBUS_DATA
(or datatype-
specific value)

wave-
form
(input)

value = (epicsInt32)Modbus data[]

15 Bit Array of bits MODBUS_DATA wave-
form
(output)

Modbus write (epicsUInt16)value[]

16, 23 16-
bit
word

Array of 16,
32, or 64-bit
words

MODBUS_DATA
(or datatype-
specific value)

wave-
form
(output)

Modbus write value[]

Any 32-
bit
word

NA READ_HISTOGRAMwave-
form
(input)

Returns a histogram array of the I/O times
in milliseconds since histogramming was
last enabled.

Any 32-
bit
word

NA HIS-
TOGRAM_TIME_AXIS

wave-
form
(input)

Returns the time axis of the his-
togram data. Each element is HIS-
TOGRAM_BIN_TIME msec.

1.5.6 asynOctet

asynOctet device support is selected with

field(DTYP,"asynOctetRead")
field(INP,"@asyn(portName,offset,timeout)drvUser[=number_of_characters]")

or

field(DTYP,"asynOctetWrite")
field(INP,"@asyn(portName,offset,timeout)drvUser[=number_of_characters]")

asynOctet device support is used to read or write strings of up to 250 characters.

Note: The 0 terminating byte at the end of the string in a waveform record or stringout record is only written to the
Modbus device if one of the ZSTRING_* drvUser types is used.

18 Chapter 1. Table of Contents

modbus

Note: On input the number of characters read from the Modbus device will be the lesser of:

• The number of characters in the record minus the terminating 0 byte (39 for stringin, NELM-1 for waveform) or

• The number of characters specified after drvUser (minus the terminating 0 byte) or

• The number of characters contained in the registers defined modbusLength argument to drvModbusAsynCon-
figure (modbusLength or modbusLength*2 depending on whether the drvUser field specifies 1 or 2 characters
per register.

The string will be truncated if any of the characters read from Modbus is a 0 byte, but there is no guarantee that the
last character in the string is followed by a 0 byte in the Modbus registers. Generally either number_of_characters or
NELM in the waveform record should be used to define the correct length for the string.

Mod-
bus
func-
tion

Off-
set
type

Data
type

drvUser Records
sup-
ported

De-
scrip-
tion

3, 4,
23

16-
bit
word

String
of
char-
acters

STRING_HIGH, STRING_LOW, STRING_HIGH_LOW,
or STRING_LOW_HIGH</br> ZSTRING_HIGH,
ZSTRING_LOW, ZSTRING_HIGH_LOW, or
ZSTRING_LOW_HIGH

waveform
(input) or
stringin

value =
Mod-
bus
data[]

16, 23 16-
bit
word

String
of
char-
acters

STRING_HIGH, STRING_LOW, STRING_HIGH_LOW,
or STRING_LOW_HIGH</br> ZSTRING_HIGH,
ZSTRING_LOW, ZSTRING_HIGH_LOW, or
ZSTRING_LOW_HIGH

waveform
(output) or
stringout

Mod-
bus
write
value[]

1.5.7 Template files

modbus provides example template files in the modbusApp/Db directory. These include the following.

1.5. EPICS device support 19

modbus

Files Description Macro arguments
bi_bit.templateasynUInt32Digital support for bi record with discrete inputs or coils.

Mask=1.
P, R, PORT, OFFSET,
ZNAM, ONAM, ZSV,
OSV, SCAN

bo_bit.templateasynUInt32Digital support for bo record with coil outputs. Mask=1. P, R, PORT, OFFSET,
ZNAM, ONAM

bi_word.templateasynUInt32Digital support for bi record with register inputs. P, R, PORT, OFFSET,
MASK, ZNAM, ONAM,
ZSV, OSV, SCAN

bo_word.templateasynUInt32Digital support for bo record with register outputs. P, R, PORT, OFFSET,
MASK, ZNAM, ONAM

mbbiDi-
rect.template

asynUInt32Digital support for mbbiDirect record with register inputs. P, R, PORT, OFFSET,
MASK, SCAN

mbboDi-
rect.template

asynUInt32Digital support for mbboDirect record with register outputs. P, R, PORT, OFFSET,
MASK

lon-
gin.template

asynUInt32Digital support for longin record with register inputs.
Mask=0xFFFF.

P, R, PORT, OFFSET,
SCAN

lon-
gout.template

asynUInt32Digital support for longout record with register outputs.
Mask=0xFFFF.

P, R, PORT, OFFSET

longinInt32.templateasynInt32 support for longin record with register inputs. P, R, PORT, OFFSET,
SCAN, DATA_TYPE

lon-
goutInt32.template

asynInt32 support for longout record with register outputs. P, R, PORT, OFFSET,
DATA_TYPE

ai.template asynInt32 support for ai record with LINEAR conversion P, R, PORT, OFFSET,
BITS, EGUL, EGUF,
PREC, SCAN

ao.template asynInt32 support for ao record with LINEAR conversion P, R, PORT, OFFSET,
BITS, EGUL, EGUF,
PREC

ai_average.templateasynInt32Average support for ai record with LINEAR conversion. This
support gets callbacks each time the poll thread reads the analog input,
and averages readings until the record is processed.

P, R, PORT, OFFSET,
BITS, EGUL, EGUF,
PREC, SCAN

intar-
ray_in.template

asynInt32Array support for waveform record with discrete, coil, or reg-
ister inputs.

P, R, PORT, OFFSET,
NELM, SCAN

intar-
ray_out.template

asynInt32Array support for waveform record with discrete, coil, or reg-
ister outputs.

P, R, PORT, OFFSET,
NELM

int64in.templateasynInt64 support for int64in record with register inputs. P, R, PORT, OFFSET,
SCAN, DATA_TYPE

int64out.templateasynInt64 support for int64out record with register outputs. P, R, PORT, OFFSET,
DATA_TYPE

ai-
Float64.template

asynFloat64 support for ai record P, R, PORT, OFFSET,
LOPR, HOPR, PREC,
SCAN, DATA_TYPE

aoFloat64.templateasynFloat64 support for ao record P, R, PORT, OFFSET,
LOPR, HOPR, PREC,
DATA_TYPE

stringin.templateasynOctet support for stringin record P, R, PORT, OFFSET,
DATA_TYPE, SCAN

stringout.templateasynOctet support for stringout record P, R, PORT, OFFSET,
DATA_TYPE, INI-
TIAL_READBACK

string-
Wave-
formIn.template

asynOctet input support for waveform record P, R, PORT, OFFSET,
DATA_TYPE, NELM,
SCAN

string-
Wavefor-
mOut.template

asynOctet output support for waveform record P, R, PORT, OFFSET,
DATA_TYPE, NELM,
INITIAL_READBACK

asyn-
Record.template

Support for asyn record. Useful for controlling trace printing, and for
debugging.

P, R, PORT, ADDR,
TMOD, IFACE

poll_delay.templateSupport for ao record to control the delay time for the poller thread. P, R, PORT
poll_trigger.templateSupport for bo record to trigger running the poller thread. P, R, PORT
statis-
tics.template

Support for bo, longin and waveform records to read I/O statistics for
the port.

P, R, PORT, SCAN

20 Chapter 1. Table of Contents

modbus

The following table explains the macro parameters used in the preceding table.

Macro Description
P Prefix for record name. Complete record name is (P)(R).
R Record name. Complete record name is (P)(R).
PORT Port name for modbus asyn port.
OFFSET Offset for Modbus data relative to start address for this port.
MASK Bit mask used to select data for this record.
ZNAM String for 0 value for bi/bo records.
ONAM String for 1 value for bi/bo records.
ZSV 0 severity for bi/bo records.
OSV 1 severity for bi/bo records.
BITS Number of bits for analog I/O devices. >0=unipolar, <0=bipolar.
DATA_TYPEdrvUser field specifying the Modbus data type. If this field is blank or is MODBUS_DATA then the

default datatype specified in the drvModbusAsynConfigure command is used. Other allowed values
are listed in the table above (UINT16, INT16SM, BCD_SIGNED, etc.)

EGUL Engineering value for lower limit of analog device.
EGUF Engineering value for upper limit of analog device.
LOPR Lower display limit of analog device.
HOPR Upper display limit of analog device.
PREC Number of digits of precision for ai/ao records.
NELM Number of elements in waveform records.
ADDR Address for asyn record, same as OFFSET above.
TMOD Transfer mode for asyn record.
IFACE asyn interface for asyn record.
SCAN Scan rate for record (e.g. “1 second”, “I/O Intr”, etc.).
INI-
TIAL_READBACK

Controls whether an initial readback from the device is done for the stringout or string waveform output
records.

1.6 Example Applications

modbus builds an example application called modbusApp. This application can be run to control any number of
Modbus PLCs.

In the iocBoot/iocTest directory there are several startup scripts for EPICS IOCs. These are designed to test most of
the features of the modbus driver on Koyo PLCs, such as the DL series from Automation Direct.

• Koyo1.cmd creates modbus port drivers to read the X inputs, write to the Y outputs, and read and write from
the C control registers. Each of these sets of inputs and outputs is accessed both as coils and as registers (V
memory). bi/bo, mbbiDirect/mbboDirect, and waveform records are loaded to read and write using these drivers.

• Koyo2.cmd creates modbus port drivers to read the X inputs, write to the Y outputs, and read and write from the
C control registers. Only coil access is used. This example also reads a 4-channel 13-bit bipolar A/D converter.
This has been tested using both signed-BCD and sign plus magnitude binary formats. Note that a ladder logic
program must be loaded that does the appropriate conversion of the A/D values into V memory.

• st.cmd is a simple example startup script to be run on non-vxWorks IOCs. It just loads Koyo1.cmd and
Koyo2.cmd. It is invoked using a command like:

../../bin/linux-x86/modbusApp st.cmd

One can also load Koyo1.cmd or Koyo2.cmd separately as in:

1.6. Example Applications 21

modbus

../../bin/linux-x86/modbusApp Koyo1.cmd

st.cmd.vxWorks is a simple example startup script to be run on vxWorks IOCs. It just loads Koyo1.cmd and
Koyo2.cmd.

The following is the beginning of Koyo1.cmd when it is configured for serial RTU with slave address 1 on /dev/ttyS1.
It also shows how to configure TCP and serial ASCII connections. (Koyo PLCs do not support ASCII however).

Koyo1.cmd

< envPaths

dbLoadDatabase("../../dbd/modbusApp.dbd")
modbusApp_registerRecordDeviceDriver(pdbbase)

Use the following commands for TCP/IP
#drvAsynIPPortConfigure(const char *portName,
const char *hostInfo,
unsigned int priority,
int noAutoConnect,
int noProcessEos);
drvAsynIPPortConfigure("Koyo1","164.54.160.158:502",0,0,0)
asynSetOption("Koyo1",0, "disconnectOnReadTimeout", "Y")
m#modbusInterposeConfig(const char *portName,
modbusLinkType linkType,
int timeoutMsec,
int writeDelayMsec)
modbusInterposeConfig("Koyo1",0,5000,0)

Use the following commands for serial RTU or ASCII
#drvAsynSerialPortConfigure(const char *portName,
const char *ttyName,
unsigned int priority,
int noAutoConnect,
int noProcessEos);
#drvAsynSerialPortConfigure("Koyo1", "/dev/ttyS1", 0, 0, 0)
#asynSetOption("Koyo1",0,"baud","38400")
#asynSetOption("Koyo1",0,"parity","none")
#asynSetOption("Koyo1",0,"bits","8")
#asynSetOption("Koyo1",0,"stop","1")

Use the following command for serial RTU
Note: non-zero write delay (last parameter) may be needed.
#modbusInterposeConfig("Koyo1",1,1000,0)

Use the following commands for serial ASCII
#asynOctetSetOutputEos("Koyo1",0,"\r\n")
#asynOctetSetInputEos("Koyo1",0,"\r\n")
Note: non-zero write delay (last parameter) may be needed.
#modbusInterposeConfig("Koyo1",2,1000,0)

NOTE: We use octal numbers for the start address and length (leading zeros)
to be consistent with the PLC nomenclature. This is optional, decimal
numbers (no leading zero) or hex numbers can also be used.
In these examples we are using slave address 0 (number after "Koyo1").

The DL205 has bit access to the Xn inputs at Modbus offset 4000 (octal)

(continues on next page)

22 Chapter 1. Table of Contents

modbus

(continued from previous page)

Read 32 bits (X0-X37). Function code=2.
drvModbusAsynConfigure("K1_Xn_Bit", "Koyo1", 0, 2, 04000, 040, 0, 100, "Koyo
→˓")

The DL205 has word access to the Xn inputs at Modbus offset 40400 (octal)
Read 8 words (128 bits). Function code=3.
drvModbusAsynConfigure("K1_Xn_Word", "Koyo1", 0, 3, 040400, 010, 0, 100, "Koyo
→˓")

The DL205 has bit access to the Yn outputs at Modbus offset 4000 (octal)
Read 32 bits (Y0-Y37). Function code=1.
drvModbusAsynConfigure("K1_Yn_In_Bit", "Koyo1", 0, 1, 04000, 040, 0, 100, "Koyo
→˓")

The DL205 has bit access to the Yn outputs at Modbus offset 4000 (octal)
Write 32 bits (Y0-Y37). Function code=5.
drvModbusAsynConfigure("K1_Yn_Out_Bit", "Koyo1", 0, 5, 04000, 040, 0, 1, "Koyo")

The DL205 has word access to the Yn outputs at Modbus offset 40500 (octal)
Read 8 words (128 bits). Function code=3.
drvModbusAsynConfigure("K1_Yn_In_Word", "Koyo1", 0, 3, 040500, 010, 0, 100, "Koyo
→˓")

Write 8 words (128 bits). Function code=6.
drvModbusAsynConfigure("K1_Yn_Out_Word", "Koyo1", 0, 6, 040500, 010, 0, 100, "Koyo
→˓")

The DL205 has bit access to the Cn bits at Modbus offset 6000 (octal)
Access 256 bits (C0-C377) as inputs. Function code=1.
drvModbusAsynConfigure("K1_Cn_In_Bit", "Koyo1", 0, 1, 06000, 0400, 0, 100, "Koyo
→˓")

Access the same 256 bits (C0-C377) as outputs. Function code=5.
drvModbusAsynConfigure("K1_Cn_Out_Bit", "Koyo1", 0, 5, 06000, 0400, 0, 1, "Koyo
→˓")

Access the same 256 bits (C0-C377) as array outputs. Function code=15.
drvModbusAsynConfigure("K1_Cn_Out_Bit_Array", "Koyo1", 0, 15, 06000, 0400, 0, 1,
→˓ "Koyo")

The DL205 has word access to the Cn bits at Modbus offset 40600 (octal)
We use the first 16 words (C0-C377) as inputs (256 bits). Function code=3.
drvModbusAsynConfigure("K1_Cn_In_Word", "Koyo1", 0, 3, 040600, 020, 0, 100, "Koyo
→˓")

We access the same 16 words (C0-C377) as outputs (256 bits). Function code=6.
drvModbusAsynConfigure("K1_Cn_Out_Word", "Koyo1", 0, 6, 040600, 020, 0, 1, "Koyo
→˓")

We access the same 16 words (C0-C377) as array outputs (256 bits). Function code=16.
drvModbusAsynConfigure("K1_Cn_Out_Word_Array", "Koyo1", 0, 16, 040600, 020, 0, 1,
→˓ "Koyo")

Enable ASYN_TRACEIO_HEX on octet server
asynSetTraceIOMask("Koyo1",0,4)
Enable ASYN_TRACE_ERROR and ASYN_TRACEIO_DRIVER on octet server
#asynSetTraceMask("Koyo1",0,9)

(continues on next page)

1.6. Example Applications 23

modbus

(continued from previous page)

Enable ASYN_TRACEIO_HEX on modbus server
asynSetTraceIOMask("K1_Yn_In_Bit",0,4)
Enable all debugging on modbus server
#asynSetTraceMask("K1_Yn_In_Bit",0,255)
Dump up to 512 bytes in asynTrace
asynSetTraceIOTruncateSize("K1_Yn_In_Bit",0,512)

dbLoadTemplate("Koyo1.substitutions")

iocInit

Note that this example is designed for testing and demonstration purposes, not as a realistic example of how modbus
would normally be used. For example, it loads 6 drivers to access the C control relays using function codes 1 (read
coils), 3 (read holding registers), 5 (write single coil), 6 (write single holding register), 15 (write multiple coils), and 16
(write multiple holding registers). This allows for testing of all function codes and record types, including waveforms.
In practice one would normally only load at most 2 drivers for the C control relays, for example function code 1 (read
coils), and function code 5 (write single coil).

testDataTypes.cmd and testDataTypes.substitutions are used for testing the different Modbus data types. The
files ModbusF1_A0_128bits.mbs, ModbusF3_A200_80words.mbs, ModbusF3_A200_80words.mbs, and Mod-
busF3_A300_80words.mbs are configuration files for the Modbus Slave program, which is an inexpensive Modbus
slave emulator. This test writes and reads each of the supported Modbus numerical data types as follows:

asyn interface Output record Input record Modbus start address Slave simulator file
asynInt32 longout longin 100 ModbusF3_A100_80words.mbs
asynInt64 int64out int64in 200 ModbusF3_A200_80words.mbs
asynFloat64 ao ai 300 ModbusF3_A300_80words.mbs

There is another test application called testClient.cpp which demonstrates how to instantiate a drvModbusAsyn object
and use it to perform Modbus I/O to an external device. This example is a pure C++ application running without an
IOC. The same code could be used in a driver in an IOC.

1.7 medm screens

modbus provides example medm .adl files in the modbusApp/op/adl directory.

1.7.1 modbusDataTypes.adl

The following is a screen shot from an IOC running the testDataTypes.cmd and testDataTypes.substitutions files,
communicating with a Modbus Slave Simulator. These are the ao/ai records using the asynFloat64 interface. It shows
that the output and input (readback) records agree.

The following is a screen shot from the Modbus Slave Simulator communicating with the ao/ai records shown above.
The values shown in this screen agree with this in the medm screen, showing that each Modbus data type is being
communicated correctly.

The following are screen shots of these screens from an IOC controlling a Koyo DL205 PLC.

24 Chapter 1. Table of Contents

http://www.modbustools.com/modbus_slave.asp

modbus

1.7. medm screens 25

modbus

1.7.2 Koyo1.adl

Top level medm screen for the Koyo1 example application.

1.7.3 Koyo_8inputs.adl

Inputs X0-X7 read as discrete inputs (function code 1).

Inputs C200-C207 read as register inputs (function code 6).

1.7.4 Koyo_8outputs.adl

Outputs Y0-Y7 written using register access (function code 6).

Outputs Outputs C200-C207 written using bit access (function code 5).

1.7.5 modbusArray.adl

Inputs C0-C377 read using a waveform record and coil access (function code 1).

26 Chapter 1. Table of Contents

modbus

1.7. medm screens 27

modbus

Inputs C0-C377 read using a waveform record and register access (function code 3).

1.7.6 modbusStatistics.adl

I/O statistics for the Modbus driver that is reading inputs X0-X37 using register access (function code 3). The his-
togram is the number of events versus TCP/IP write/read cycle time in msec.

1.7.7 Koyo2.adl

Top level medm screen for the Koyo2 example application.

1.7.8 Koyo_4ADC.adl

4 ADC inputs from a 13-bit bipolar ADC.

1.8 Debug tracing

One can obtain diagnostic output for a modbus port driver using the “dbior” or “asynPrint” commands at the iocsh or
vxWorks shell. “asynReport” with no arguments will print a brief report for all asyn drivers, including the drvAsynIP-
Port or drvAsynSerialPort driver that modbus drivers are connected to, and for all modbus port drivers. For example,
a partial output for the Koyo1 application when it is connected via TCP is:

28 Chapter 1. Table of Contents

modbus

1.8. Debug tracing 29

modbus

30 Chapter 1. Table of Contents

modbus

1.8. Debug tracing 31

modbus

epics> asynReport
Koyo1 multiDevice:No canBlock:Yes autoConnect:No
Port 164.54.160.158:502: Connected
K1_Xn_Bit multiDevice:Yes canBlock:No autoConnect:Yes

addr 0 autoConnect Yes enabled Yes connected Yes exceptionActive No
addr 1 autoConnect Yes enabled Yes connected Yes exceptionActive No
addr 2 autoConnect Yes enabled Yes connected Yes exceptionActive No
addr 3 autoConnect Yes enabled Yes connected Yes exceptionActive No
addr 4 autoConnect Yes enabled Yes connected Yes exceptionActive No
addr 5 autoConnect Yes enabled Yes connected Yes exceptionActive No
addr 6 autoConnect Yes enabled Yes connected Yes exceptionActive No
addr 7 autoConnect Yes enabled Yes connected Yes exceptionActive No

modbus port: K1_Xn_Bit
K1_Xn_Word multiDevice:Yes canBlock:No autoConnect:Yes

addr 0 autoConnect Yes enabled Yes connected Yes exceptionActive No

To obtain more detailed information, one can request information for a specific modbus port driver, and output level
>0 as follows:

epics> asynReport 5, "K1_Xn_Word"
K1_Xn_Word multiDevice:Yes canBlock:No autoConnect:Yes

enabled:Yes connected:Yes numberConnects 1
nDevices 1 nQueued 0 blocked:No
asynManagerLock:No synchronousLock:No
exceptionActive:No exceptionUsers 0 exceptionNotifys 0
interfaceList

asynCommon pinterface 0x4001d180 drvPvt 0x8094f78
asynDrvUser pinterface 0x4001d10c drvPvt 0x8094f78
asynUInt32Digital pinterface 0x4001d118 drvPvt 0x8094f78

(continues on next page)

32 Chapter 1. Table of Contents

modbus

(continued from previous page)

asynInt32 pinterface 0x4001d134 drvPvt 0x8094f78
asynFloat64 pinterface 0x4001d148 drvPvt 0x8094f78
asynInt32Array pinterface 0x4001d158 drvPvt 0x8094f78

addr 0 autoConnect Yes enabled Yes connected Yes exceptionActive No
exceptionActive No exceptionUsers 1 exceptionNotifys 0
blocked No

modbus port: K1_Xn_Word
asyn TCP server: Koyo1
modbusFunction: 3
modbusStartAddress: 040400
modbusLength: 010
plcType: Koyo
I/O errors: 0
Read OK: 5728
Write OK: 0
pollDelay: 0.100000
Time for last I/O 3 msec
Max. I/O time: 12 msec

To obtain run-time debugging output for a driver use the asynSetTraceMask and asynSetTraceIOMask commands. For
example the following commands will show all I/O to and from the PLC from the underlying drvAsynIPPort driver:

epics> asynSetTraceIOMask "Koyo1",0,4 # Enable traceIOHex
epics> asynSetTraceMask "Koyo1",0,9 # Enable traceError and traceIODriver
epics>
2007/04/12 17:27:45.384 164.54.160.158:502 write 12

00 01 00 00 00 07 ff 02 08 00 00 20
2007/04/12 17:27:45.390 164.54.160.158:502 read 13

00 01 00 00 00 07 ff 02 04 00 00 00 00
2007/04/12 17:27:45.424 164.54.160.158:502 write 12

00 01 00 00 00 07 ff 03 41 00 00 08
2007/04/12 17:27:45.432 164.54.160.158:502 read 25

00 01 00 00 00 13 ff 03 10 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00
...
epics> asynSetTraceMask "Koyo1",0,1 # Turn off traceIODriver

The following command shows the I/O from a specific modbus port driver:

epics> asynSetTraceIOMask "K1_Yn_In_Word",0,4 # Enable traceIOHex
epics> asynSetTraceMask "K1_Yn_In_Word",0,9 # Enable traceError and traceIODriver
epics>
2007/04/12 17:32:31.548 drvModbusAsyn::doModbusIO port K1_Yn_In_Word READ_REGISTERS
09 00 00 00 00 00 00 00
2007/04/12 17:32:31.656 drvModbusAsyn::doModbusIO port K1_Yn_In_Word READ_REGISTERS
09 00 00 00 00 00 00 00
2007/04/12 17:32:31.770 drvModbusAsyn::doModbusIO port K1_Yn_In_Word READ_REGISTERS
09 00 00 00 00 00 00 00
2007/04/12 17:32:31.878 drvModbusAsyn::doModbusIO port K1_Yn_In_Word READ_REGISTERS
09 00 00 00 00 00 00 00
2007/04/12 17:32:31.987 drvModbusAsyn::doModbusIO port K1_Yn_In_Word READ_REGISTERS
09 00 00 00 00 00 00 00
epics> asynSetTraceMask "K1_Yn_In_Word",0,1 # Disable traceIODriver

1.8. Debug tracing 33

modbus

One can also load an EPICS asyn record on a modbus port, and then use EPICS channel access to turn debugging
output on and off. The following medm screen shows how to turn on I/O tracing using this method.

1.8.1 asynRecord.adl

Using the asynRecord to turn on traceIODriver and traceIOHex for debugging.

The asyn record can also be used to perform actual I/O to the PLC. For example the following screen shots shows the
asyn record being used to control output Y1 on a PLC. Note that the ADDR field is set to 1 (to select Y1) and the data
set to 1 (to turn on the output). Each time the asyn record is processed the value will be sent to the PLC.

1.8.2 asynRegister.adl

Using the asynRecord to perform actual I/O to a PLC. Note that Interface (IFACE)=asynUInt32Digital, Transfer
(TMOD)=Write, and Output (UI32OUT)=1. This value will be written to the Y1 output when the record is processed.

34 Chapter 1. Table of Contents

modbus

1.8. Debug tracing 35

modbus

36 Chapter 1. Table of Contents

	Table of Contents
	Acknowledgments
	Overview of Modbus
	Modbus communication links
	Modbus data types
	Modbus communications
	Modbus function codes
	Modbus addresses
	Modbus data length limitations
	More information on Modbus

	Driver architecture
	Modbus read functions
	Modbus write functions
	Modbus write/read functions
	Platform independence

	Creating a modbus port driver
	TCP/IP
	Serial RTU
	Serial ASCII
	modbusInterposeConfig
	drvModbusAsynConfigure
	Modbus register data types
	Note for Wago devices
	Number of drvAsynIPPort drivers for TCP
	Number formats

	EPICS device support
	asynUInt32Digital
	asynInt32
	asynInt64
	asynFloat64
	asynInt32Array
	asynOctet
	Template files

	Example Applications
	medm screens
	modbusDataTypes.adl
	Koyo1.adl
	Koyo_8inputs.adl
	Koyo_8outputs.adl
	modbusArray.adl
	modbusStatistics.adl
	Koyo2.adl
	Koyo_4ADC.adl

	Debug tracing
	asynRecord.adl
	asynRegister.adl

